ROOT 2022

Axel Naumann <u>axel@cern.ch</u> for the ROOT team 2022-05-09

3.5 years ago, at ROOT Workshop 2018, Sarajevo

- 45% new developers in the team
- Big new topics:
 - RDataFrame!
 - TTree-successor!
 - New web-graphics & web-GUI & event display!
 - Lots of news in RooFit + TMVA!

What does ROOT do in 3.5 years?

- In 2018, much of this was a seed: ideas, design discussions, R&D
- Estimated investment over 3.5 years:
 - RNTuple, TTree-successor: 1 developer
 - RDataFrame: 1.5 developers
 - Web graphics / GUI / event display: 1.5 developers
 - RooFit: 1.5 developers
- ROOT Workshop 2022: covers result of 3.5 years of creativity, work, and benchmarking

Support!

- https://root-forum.cern.ch stats of 2021:
 - 15'000 posts, after 17k in 2020 and 14k in 2019
 - 1.4k new users, after 1.3k (2020) and 1.0k (2019)
 - 1st response on average after 11h, after 19h (2020), 30h (2019) [only topics with an answer are taken into account]
 - CERN's #1 forum
- · We spend a considerable time here, web forum is virtually only channel

Bugs

• 50% of issues closed after about 10 days, all stats thanks to https://cauldron.io/project/5676

2021's Major Features

Distributed RDataFrame

- RDataFrame used by N*10% of analyses, sometimes embedded in analysis mini-frameworks: Bamboo, CROWN, Wmass,...
 - RDataFrame scales through multi-threading
- · Distributed RDataFrame: scale across nodes (cluster), PROOF succession
 - Python-layer over RDataFrame: same interfaces, re-use of industry standard schedulers / cluster "adaptors": Dask (i.e. HTCondor etc), Spark, AWS Lambda

Distributed RDataFrame

- Prototype became minimal viable product in 2021
 - Feedback from physicists + first analysis groups are using it!
 - Lots of attention from the community: real demand
- Incorporating input from PROOF devs + experts, as well as cluster admins

RDataFrame::Vary()

- Can be anywhere inside the whole analysis, anything: weight, input data, efficiency,...
- · Creates a "parallel universe" of everything that depends on the varied value
- Evaluates everything in one single loop through data: a game changer behind an incredibly simple interface!

RooFit GPU + Pythonizations

- RooFit now has architecture-specific accelerator libraries for key functions
 - · Optimal one loaded at runtime, given current architecture
 - Now also includes
 GPU version!
- Much improved Python interfaces!

11

TMVA SOFIE

- ONNX is standard interchange / persistency format for trained models
- SOFIE can read those and generate C++
- Much more performant than ONNX runtime
- Incredibly lean
 (BLAS dependency)

Interpreter / Binding, Build

clang-repl part of LLVM!

✓ [clang-repl] Land initial infrastructure for incremental parsing

In http://lists.llvm.org/pipermail/llvm-dev/2020-July/143257.html we have mentioned our plans to make some of the incremental compilation facilitie available in llvm mainline.

This patch proposes a minimal version of a repl, clang-repl, which enable interpreter-like interaction for C++. For instance:

./bin/clang-repl
clang-repl> int i = 42;

- ې main
- Ilvmorg-15-init ... Ilvmorg-13.0.0-rc1
- vgvassilev committed on 13 May 2021
- E Showing 26 changed files with 1,191 additions and 159 deletions.
 - √ ♣ 3 ■■■■ clang/include/clang/CodeGen/CodeGenAction.h □

Interpreter / Binding, Build

- Upgrade of cling to LLVM 9
 - ROOT now requires C++14
 - significant JIT optimization:
 "interpreted" code
 == compiled code

Open Data benchmark 4 ~

ROOT has updated docker images, Conda nightlies

Documentation

- Team spent two weeks on documentation, manual
 - Complete re-write using modern ROOT, Python and C++
- Multiple blog posts, including contributed ones

ROOT Workshop 2022. Axel Naum

RNTuple

- A revolution: Thee successor, after 20 incredibly successful years
- Scheduled for production for HL-LHC
- Motivation: faster, smaller, future devices, sturdy, combining the best of 20 years of experience and state-of-the-art alternatives

• Result: **3-5x** faster, **-10..-20%** storage = 5..10MCHF/y

I/O Performance

· Read throughput SSD, Di-Muon Analysis on CMS nanoAOD

Analysis Performance

2021 Dev Statistics

Code Change = Pull Requests

About 2000 PRs over 2021, PRs per week:

Contributors

Consistently high number of contributors / month

Contributors

High ratio of community contributors / month

Communication

Presentations, Working Groups

- Conferences: ACAT, vCHEP, EPS-HEP, LHCP, JLAB round table, PyHEP, Dask Distributed Summit, <u>HIPS'21</u>, <u>CMMSE'21</u>, CCGrid, ICTOpen, ICHEP
- Several presentations with experiments' physics groups
- Engagement with experiments, e.g. CMS analysis tools task force, ATLAS RooFit Hackathon
- Member of CERN's Open Science working group, CERN-IT Analysis Facility working group

Trainings

- Contributions to CMS Data Analysis school
- Software carpentries
- C++ course
- CERN Academic Training (SWAN)

LHCC Review

- Review of readiness for HL-LHC
- 60 pages of documentation of how ROOT works, what ROOT plans to do and why, risks and benefits
 - Significant load next to everything else
- One-day, hybrid event with reviewers: extremely constructive and helpful
- Report expected for March

HL-LHC Analysis With ROOT

ROOT Project Input to the HL-LHC Computing Review Stage 2

The ROOT Team, September 2021

E-mail: rootdev@cern.ch

HighLO

- Cooperation with finance research on fraud detection
- Two publications in finance journals

Unravelling the JPMorgan spoofing case using particle physics visualization methods

The Future of ROOT, the Future of Data Analysis

ROOT's Role

- ROOT is relied on by virtually all HEP experiments
 - We know since day 1, ROOT could be way more relevant outside HEP
- More than 1 exabyte of data is entrusted with ROOT
- ROOT serves as a HEP standard library, as a distribution mechanism, as the hub of an ecosystem
- Experts know ROOT and know how to use it it's the new physicists where ROOT needs to convince

ROOT's Core Duties

- · Statistics and modeling: e.g. fitting, likelihood parametrization
- I/O: e.g. reading (+ writing) data, efficiently
- · Math library: e.g. PRNG, Lorentz vector, differentiation
- · Analysis interfaces: e.g. RDataFrame, histograms
- Efficient interplay with machine learning libraries
- · Graphics: e.g. plots on your screen, publication-grade scientific visualization, event display

ROOT's Plans

- Unbeatable throughput for piping data into machine learning frameworks, training and inference
- Versatile, understandable, robust, and highly efficient analysis interface RDataFrame
- Providing the I/O format for the next 25 years
- A simple high-level graphics system: plot trigger efficiency! Draw a 2D histogram with categories!
- Well-designed interplay between I/O, ML, graphics, histograms, RDataFrame

Don't we have that "Today"?

- Still a long way:
 - Integration of different parts
 - Reaping their benefits

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1762839

- We are building the pillars, the bridges are next. R&D + engineering!
- · ROOT of 2025: easy to use; with a consistent, coherent design, as always

import ROOT

- ROOT as a seamless Python module, for everything we do
- Explicit goal: excellent integration and interoperability
- Reap the benefits of a fast C++ core, without exposing that C++ core

ROOT Workshop 2022. Axel Naumann, 2022-05-09

33

What Else? Major R&D Topics

- Next-generation histograms: simple design; categorical, circular, counting axes; multiple uncertainties; multiple weights per bin; well integrated with RDataFrame, I/O, graphics
- Auto-diff and GPUize the world: faster computations / minimization
- Simpler install: download mini-ROOT, grab the rest as needed.
 (c) Rene Brun ("BOOT"), 15 years ago...
- C++ reflection instead of dictionaries, simpler TClass
- · (Distributed) RDataFrame: internal optimization of analysis, incl. GPU offloading

Future Challenges

- We see that C++ is the right core: stable, flexible path towards high
 efficiency. Yet, fewer students know C++. Not a new fear nor specific to
 ROOT, and we manage to counter it by attracting brilliant computer scientists
- Continuing separation of expert-level ROOT implementation, from user-level ROOT interfaces: harder to contribute for physicists, harder to "make it yours".
 ROOT becomes like Linux (install and use), instead of "a tool by us, for us"
- Significant investment in "a world without ROOT" (as a goal by itself), provides fantastic occasions for benchmarking against alternatives, and show the community why to trust ROOT

Conclusion

Why?

Independent study shows ROOT's analysis interface RDataFrame to be significantly **faster**

Goal

- ROOT provides an analysis interface that's
 - Reliable
 - Sustainable
 - Supported
 - Efficient
 - Simple

This Workshop

- Back at Fermilab after 21 years!
- Presentations by the ROOT team with all the details
- · Presentations by users, providing feedback and criticism
- · Discussions to understand, underline, convince, spark new ideas
 - THE crucial part of this workshop!
 - · Zoom (raise hand), Zoom chat, or https://root-forum.cern.ch

THANK YOU

for caring about ROOT!

Martin Vorel, CC BY-SA 4.0, via Wikimedia Commons